
Wir betrachten eine Grundgesamtheit mit 6 Wertepaaren

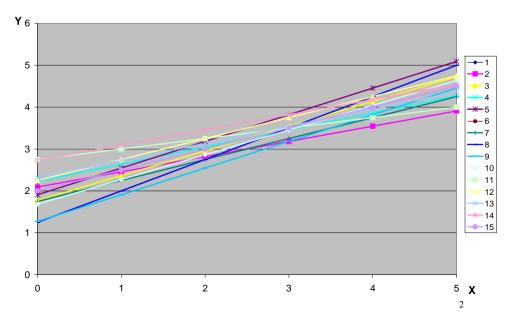
i	1	2	3	4	5	6
X	1	1	3	3	5	5
у	2	3	3	4	4	5

mit der wahren (Grundgesamtheits-) Regressionsfunktion

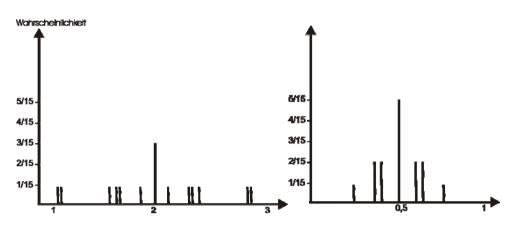
$$y* = \alpha + \beta x = 2 + 0.5x.$$

Die Wertepaare der Grundgesamtheit und die Beobachtungspunkte sind im folgenden Bild dargestellt.

Wir ziehen aus der Grundgesamtheit Stichproben vom Umfang n = 4.


Dabei gibt es insgesamt $\binom{6}{4}$ =15 verschiedene Stichproben dieses

Umfangs. Die folgende Tabelle enthält die Stichproben (angegeben durch die Nummern der zugehörigen Punkte) und die zugehörigen KQ-Regressionsgeraden (KQ = Methode der Kleinsten-Quadrate).


Stichprobenverteilung der Regressionskoeffizienten

$$N = 6, n = 4$$

Stichprobenpunkte	Regressionsgerade	Kurve Nr.
1 2 3 4	$\hat{y} = 2 + 0.5 x$	1
1 2 3 5	$\hat{y} = 2,0909 + 0,3636x$	2
123 6	$\hat{y} = 1,7727 + 0,5909x$	3
1 2 4 5	$\hat{y} = 2,2273 + 0,4091x$	4
12 4 6	$\hat{y} = 1,9091 + 0,6364x$	5
12 56	$\hat{y} = 2 + 0.5x$	6
1 3 4 5	$\hat{y} = 1,75 + 0,5x$	7
1 34 6	$\hat{y} = 1,25 + 0,75x$	8
1 3 56	$\hat{y} = 1,2727 + 0,6364x$	9
1 456	$\hat{y} = 1,6818 + 0,5909x$	10
2 3 4 5	$\hat{y} = 2.75 + 0.25x$	11
234 6	$\hat{y} = 2.25 + 0.5x$	12
23 56	$\hat{y} = 2,3182 + 0,4091x$	13
2 456	$\hat{y} = 2,7273 + 0,3636x$	14
3 4 5 6	$\hat{y} = 2 + 0.5$	15

Für n = 4

α	Ρ(α)
1,25	1/15
1,2727	1/15
1,6818	1/15
1,75	1/15
1,7727	1/15
1,9091	1/15
2	3/15
2,0909	1/15
2,2273	1/15
2,25	1/15
2,3182	1/15
2,7273	1/15
2.75	1/15

β	Ρ(β)
0,25	1/15
0,3636	2/15
0,4091	2/15
0,5	5/15
0,5909	2/15
0,6364	2/15
0,75	1/!%

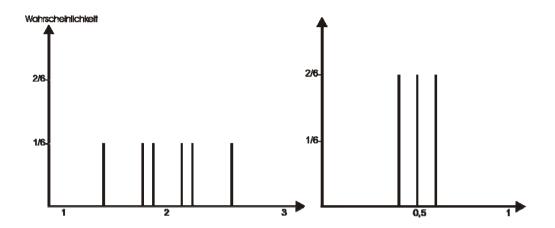
EIGENTLICH $\hat{\alpha}$ UND $\hat{\beta}$

E
$$(\alpha) = 2$$

Var $(\alpha) = 0.1746$

E
$$(\beta) = 0.5$$

Var $(\beta) = 0.0153$


Stichprobenverteilung der Regressionskoeffizienten

$$N = 6$$
$$n = 5$$

Stichprobenpunkte	Regressionsgerade	Kurve Nr.
1 2 3 4 5	$\hat{y} = 2.18 + 0.393 \text{ x}$	1
1 2 3 4 6	$\hat{y} = 1.82 + 0.607 \text{ x}$	2
123 56	$\hat{y} = 1.9 + 0.5 \text{ x}$	3
12 456	$\hat{y} = 2.1 + 0.5 \text{ x}$	4
1 3 4 5 6	$\hat{y} = 1,536 + 0,607 \text{ x}$	5
2 3 4 5 6	$\hat{y} = 2,464 + 0,393 \text{ x}$	6

Für n = 5

α	P(a)
1,536	1/6
1,82	1/6
1,9	1/6
2,1	1/6
2,18	1/6
2,464	1/6

β	Ρ(β)
0,393	2/6
0,5	2/6
0,607	2/6

$$E(\beta) = 0.5$$

Var (a) = 0.0868

Var
$$(\beta) = 0.0075$$

 $E(\alpha) = 2$

vorher:

$$Var(\alpha) = 0.1746$$

Var
$$(\beta) = 0.0153$$

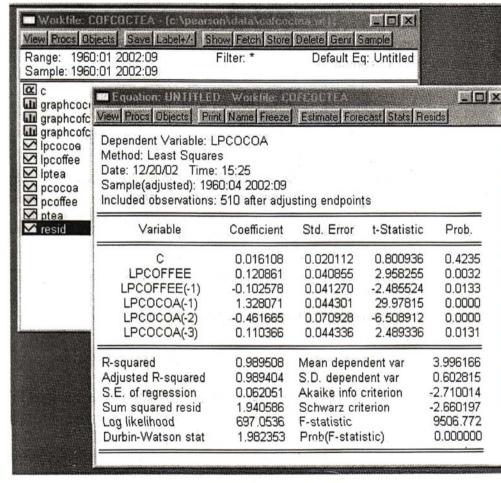


Figure 4.4: Regression output